Algorithms for Non - Negative Independent Component Analysis 2
نویسنده
چکیده
منابع مشابه
Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions
Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملUnsupervised Extraction of Multi-Frame Features for Lip-Reading
The features of human lip motion from video clips are extracted by three unsupervised learning algorithms, i.e., Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Non-negative Matrix Factorization (NMF). Since the human perception of facial motion goes through two different pathways, i.e., the lateral fusifom gyrus for the invariant aspects and the superior temporal ...
متن کاملBlind Source Separation Algorithms with Matrix Constraints
In many applications of Independent Component Analysis (ICA) and Blind Source Separation (BSS) estimated sources signals and the mixing or separating matrices have some special structure or some constraints are imposed for the matrices such as symmetries, orthogonality, non-negativity, sparseness and specified invariant norm of the separating matrix. In this paper we present several algorithms ...
متن کاملUngrounded independent non-negative factor analysis
We describe an algorithm that performs regularized non-negative matrix factorization (NMF) to find independent components in non-negative data. Previous techniques proposed for this purpose require the data to be grounded, with support that goes down to 0 along each dimension. In our work, this requirement is eliminated. Based on it, we present a technique to find a low-dimensional decompositio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002